Случайный процесс - определение. Что такое Случайный процесс
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Случайный процесс - определение

Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс
Найдено результатов: 436
СЛУЧАЙНЫЙ ПРОЦЕСС         
(вероятностный , или стохастический), процесс изменения во времени состояния или характеристик некоторой системы под влиянием различных случайных факторов, для которого определена вероятность того или иного его течения. Типичным примером случайного процесса может служить броуновское движение. См. также Марковский процесс, Стационарный случайный процесс.
Случайный процесс         
(вероятностный, или стохастический)

процесс (т. е. изменение во времени состояния некоторой системы), течение которого может быть различным в зависимости от случая и для которого определена вероятность того или иного его течения. Типичным примером С. п. может служить Броуновское движение; другими практически важными примерами являются турбулентные течения (См. Турбулентное течение) жидкостей и газов, протекание тока в электрической цепи при наличии неупорядоченных флуктуаций (См. Флуктуации) напряжения и силы тока (шумов) и распространение радиоволн при наличии случайных замираний (федингов) радиосигналов, создаваемых метеорологическими или иными помехами. К числу С. п. могут быть причислены и многие производственные процессы, сопровождающиеся случайными флуктуациями, а также ряд процессов, встречающихся в геофизике (например, вариации земного магнитного поля), физиологии (например, изменение биоэлектрических потенциалов мозга, регистрируемое на электроэнцефалограмме) и экономике.

Для возможности применения математических методов к изучению С. п. требуется, чтобы мгновенное состояние системы можно было схематически представить в виде точки некоторого фазового пространства (пространства состояний) R', при этом С. п. будет представляться функцией X (t) времени t со значениями из R. Наиболее изученным и весьма интересным с точки зрения многочисленных приложений является случай, когда точки R задаются одним или несколькими числовыми параметрами (обобщёнными координатами системы). В математических исследованиях под С. п. часто понимают просто числовую функцию X (t), могущую принимать различные значения в зависимости от случая с заданным распределением вероятностей для различных возможных её значений - одномерный С. п.; если же точки R задаются несколькими числовыми параметрами, то соответствующий С. п. X (t)={X1(t), X2(t),..., Xk (t)} называется многомерным.

Математическая теория С. п. (а также более общих случайных функций (См. Случайная функция) произвольного аргумента) является важной главой вероятностей теории (См. Вероятностей теория). Первые шаги по созданию теории С. п. относились к ситуациям, когда время t изменялось дискретно, а система могла иметь лишь конечное число разных состояний, т. е. - к схемам последовательности зависимых испытаний (А. А. Марков старший и др.). Развитие теорий С. п., зависящих от непрерывно меняющегося времени, является заслугой сов. математиков Е. Е. Слуцкого (См. Слуцкий), А. Н. Колмогорова и А. Я. Хинчина, американских математиков Н. Винера, В. Феллера и Дж. Дуба, французского математика П. Леей (См. Лей), швед. математика X. Крамера и др. Наиболее детально разработана теория некоторых специальных классов С. п., в первую очередь - марковских процессов (См. Марковский процесс) и стационарных случайных процессов (См. Стационарный случайный процесс), а также ряда подклассов и обобщений указанных двух классов С. п. (цепи Маркова, ветвящиеся процессы, процессы с независимыми приращениями, мартингалы, процессы со стационарными приращениями и др.).

Лит.: Марков А. А., Замечательный случай испытаний, связанных в цепь, в его кн.: Исчисление вероятностей, 4 изд., М., 1924; Слуцкий Е. Е., Избранные труды, М., 1960; Колмогоров А. Н., Об аналитических методах в теории вероятностей, "Успехи математических наук", 1938, в. 5, с. 5-41; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, там же, с. 42-51; Винер Н., Нелинейные задачи в теории случайных процессов, пер. с англ., М., 1961; Дуб Дж., Вероятностные процессы, пер. с англ., М., 1956; Леви П., Стохастические процессы и броуновское движение, пер. с франц., М., 1972; Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Розанов Ю. А., Случайные процессы, М., 1971; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1-2, М., 1971-73.

А. М. Яглом.

Случайный процесс         
Случа́йный проце́сс (вероятностный процесс, случайная функция, стохастический процесс) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.
СТАЦИОНАРНЫЙ СЛУЧАЙНЫЙ ПРОЦЕСС         
случайный процесс, вероятностные характеристики которого не меняются с течением времени.
Стационарный случайный процесс         

важный специальный класс случайных процессов (См. Случайный процесс), часто встречающийся в приложениях теории вероятностей к различным разделам естествознания и техники. Случайный процесс X (t) называется стационарным, если все его вероятностные характеристики не меняются с течением времени t (так что, например, распределение вероятностей величины X (t) при всех t является одним и тем же, а совместное распределение вероятностей величин X (t1) и X (t2) зависит только от продолжительности промежутка времени t2-t1, т. е. распределения пар величин {X (t1), X (t2)} и {X (t1 + s), X (t2 + s)} одинаковы при любых t1, t2 и s и т.д.).

Схема С. с. п. с хорошим приближением описывает многие реальные явления, сопровождающиеся неупорядоченными флуктуациями. Так, например, пульсации силы тока или напряжения в электрической цепи (электрический "шум") можно рассматривать как С. с. п., если цепь эта находится в стационарном режиме, т. е. если все её макроскопические характеристики и все условия, вызывающие протекание через неё тока, не меняются во времени; пульсации скорости в точке турбулентного течения представляют собой С. с. п., если не меняются общие условия, порождающие рассматриваемое течение (т. е. течение является установившимся), и т.д. Эти и другие примеры С. с. п., встречающиеся в физике (в частности, гео- и астрофизике), механике и технике, стимулировали развитие исследований в области С. с. п.; при этом существенными оказались также и некоторые обобщения понятия С. с. п. (например, понятия случайного процесса со стационарными приращениями заданного порядка, обобщённого С. с. п. и однородного случайного поля).

В математической теории С. с. п. основную роль играют моменты распределении вероятностей значений процесса X (t), являющиеся простейшими числовыми характеристиками этих распределений. Особенно важны моменты первых двух порядков: среднее значение С. с. п. EX (t) = m - математическое ожидание случайной величины X (t) и корреляционная функция С. с. п. EX (t1) X (t2)= B (t2-t1) - математическое ожидание произведения X (t1) X (t2) (просто выражающееся через дисперсию величин X (t) и коэффициент корреляции между X (t1) и X (t2); см. Корреляция). Во многих математических исследованиях, посвященных С. с. п., вообще изучаются только те их свойства, которые полностью определяются одними лишь характеристиками m и В (τ) (т. н. корреляционная теория С. с. п.). В этой связи случайные процессы X (t), имеющие постоянное среднее значение EX (t) = m и корреляционную функцию В (t2, t1) = EX (t1) X (t2), зависящую только от t2 - t1, часто называют С. с. п. в широком смысле (а более частные случайные процессы, все характеристики которых не меняются с течением времени, в таком случае называются С. с. п. в узком смысле).

Большое место в математической теории С. с. п. занимают исследования, опирающиеся на разложение случайного процесса X (t) и его корреляционной функции B (t2 -t1) = В (τ) в интеграл Фурье, или Фурье - Стилтьеса (см. Фурье интеграл). Основную роль при этом играет теорема Хинчина, согласно которой корреляционная функция С. с. п. X (t) всегда может быть представлена в виде

, (1)

где F (λ) - монотонно неубывающая функция λ (а интеграл справа - это интеграл Стилтьеса); если же В (τ) достаточно быстро убывает при |τ|→∞ (как это чаще всего и бывает в приложениях при условии, что под X (t) понимается на самом деле разность X (t) - m), то интеграл в правой части (1) обращается в обычный интеграл Фурье:

, (2)

где f (λ) = F'(λ) - неотрицательная функция. Функция F (λ) называемая спектральной функцией С. с. п. X (t), а функция F (λ) [в случаях, когда имеет место равенство (2)] - его спектральной плотностью. Из теоремы Хинчина вытекает также, что сам процесс X (t) допускает Спектральное разложение вида

, (3)

где Z (λ) - случайная функция с некоррелированными приращениями, а интеграл справа понимается как предел в среднем квадратичном соответствующей последовательности интегральных сумм. Разложение (3) даёт основание рассматривать любой С. с. п. X (t) как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными амплитудами и фазами; при этом спектральная функция F (λ) и спектральная плотность f (λ) определяют распределение средней энергии входящих в состав X (t) гармонических колебаний по спектру частот λ (в связи с чем в прикладных исследованиях функция f (λ) часто называется также энергетическим спектром или спектром мощности С. с. п. X (t)).

Выделение понятия С. с. п. и получение первых относящихся к нему математических результатов являются заслугой Е. Е. Слуцкого (См. Слуцкий) и относятся к концу 20-х и началу 30-х гг. 20 в. В дальнейшем важные работы по теории С. с. п. были выполнены А. Я. Хинчиным, А. Н. Колмогоровым, Г. Крамером, Н. Винером и др.

Лит.: Слуцкий Е. Е., Избр. тр., М., 1960; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, "Успехи математических наук", 1938, в. 5, с, 42-51; Розанов Ю. А., Стационарные случайные процессы, М., 1963; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей. (Основные понятия. Предельные теоремы. Случайные процессы), 2 изд., М., 1973; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1, М., 1971; Хеннан Э., Многомерные временные ряды, пер. с англ., М., 1974.

А. М. Яглом.

Случайная функция         

функция произвольного аргумента t (заданная на множестве Т его значений и сама принимающая или числовые значения или, более общо, значения из какого-то векторного пространства) такая, что её значения определяются с помощью некоторого испытания и в зависимости от его исхода могут быть различными, причём для них существует определённое распределение вероятностей. Если множество Т конечно, то С. ф. представляет собой конечный набор случайных величин (См. Случайная величина), который можно рассматривать как одну векторную случайную величину. Из числа С. ф. с бесконечным Т наиболее изучен важнейший частный случай, когда t принимает числовые значения и является временем; соответствующая С. ф. X (t) тогда называется случайным процессом (См. Случайный процесс) (а если время t пробегает лишь целочисленные значения, то также и случайной последовательностью, или временным рядом). Если же значениями аргумента t являются точки из некоторой области многомерного пространства, то С. ф. называется случайным полем. Типичными примерами С. ф., отличных от случайных процессов, являются поля скорости, давления и температуры турбулентного течения жидкости или газа, а также значения высоты z взволнованной морской поверхности или поверхности какой-либо искусственной шероховатой пластинки.

Математическая теория С. ф. совпадает с теорией распределений вероятностей в функциональном пространстве значений функции X (t), эти распределения могут задаваться набором конечномерных распределений вероятностей для совокупностей случайных величин X (t1), X (t2),..., X (tn), отвечающих всевозможным конечным подмножествам (t1, t2,..., tn) точек множества Т, или же характеристическим функционалом С. ф. X (t), представляющим собой математическое ожидание случайной величины il [X (t)], где l [X (t)] - линейный функционал от Х (t) общего вида. Значительное развитие получила теория однородных случайных полей, являющихся частным классом С. ф., обобщающим класс стационарных случайных процессов (См. Стационарный случайный процесс).

Лит.: Выбросы случайных полей Сб. ст. М., 1972; Yaglom А. М., Second-order homogeneous random fields, в кн.: Proceedings 4th Berkeley symposium on mathematical statistics and probability, v. 2, Berk - Ins Aug., 1961; Whittle P., Stochastic processes in several dimensions, "Bulletin of the Institute of Statistics", 1963, v. 40.

Вероятностный процесс         
СЛУЧАЙНАЯ ФУНКЦИЯ         
функция произвольного аргумента такая, что ее значения определяются случайным исходом некоторого испытания, причем для них существует определенное распределение вероятностей. Понятие случайной функции весьма близко понятию случайного процесса.
СТОХАСТИЧЕСКИЙ ПРОЦЕСС         
то же, что случайный процесс.
ВЕРОЯТНОСТНЫЙ ПРОЦЕСС         
то же, что случайный процесс.

Википедия

Случайный процесс

Случа́йный проце́сс (вероятностный процесс, случайная функция, стохастический процесс) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.

Что такое СЛУЧАЙНЫЙ ПРОЦЕСС - определение